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1 Introduction

This short note aims to explain the Sato-Kashiwara filtration on D-modules. It
will primarily aim to cover [1, §5].

Suppose we have a C-scheme X, and let’s say it’s affine for the sake of
simplicity. Then the sheaf DDX is a quasicoherent sheaf of (noncommutative)
algebras over X. Since X is affine in this case, DX is just the quasicoherent
sheaf associated to a noncommutative algebra which by abuse of notation we
also write as DX . Recall the construction:

Definition 1.1.

Let X be a scheme. To any affine open U ⊂ X, we define the algebra DU

as a subalgebra of End(OX) generated by OX and ΘX = DerC(OX), the
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sheaf of vector fields.

Example 1.2.

Let X = An. We have OX = C[x1, . . . , xn] while ΘX = C[∂x1 , . . . , ∂xn ]
where ∂xi =

∂
∂xi

is the partial differential operator. Then

DAn = C[x1, . . . , xn, ∂x1 , . . . , ∂xn ]

subject to the usual relations between xi and ∂xj
.

D-modules come with an important filtration known as the order filtration,
and since they are quasicoherent sheaves of infinite-dimensional algebras, these
filtrations are important to get a handle on their modules.

Definition 1.3.

The order filtration on DU for U a smooth affine scheme is constructed
as follows. We define F0DU := OU . Then we iteratively define

FiDU := {f ∈ DU | [f,OU ] ⊂ Fi−1DU}.

When U = SpecAn, we have another filtration as well.

Definition 1.4.

The Bernstein filtration on DAn is defined by

FiDAn =
⊕

|α|+|β|≤i

C · {xα∂β},

where α, β are multi-indices in Zn
≥0. (In other words, take the generators

x1, . . . , xn, ∂x1 , . . . , ∂xn and allow for all formal polynomials of degree ≤ i
in these generators.)

Example 1.5.

On X = An, the order filtration gives

FiDAn = C[x1, . . . , xn] · {∂I | |I| ≤ i},

where I ∈ Zn
≥0 is an n-tuple indexing the monomial in the partial differen-

tial operators, i.e.
∂(a1,...,an) := ∂a1

x1
· · · ∂an

xn
.

To any D-module M (i.e. a module over DX) we want it to have a filtration
compatible with M , along with certain other finiteness conditions which give
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the filtration good properties; these are called good filtrations. These good
filtrations are important for us to work with the associated graded modules, but
they always exist and any two good filtrations are actually not very far off from
each other. However, there are more filtrations that we want to consider which
study other characteristics - in this note, we take a look at the Sato-Kashiwara
filtration, which measures the “dimension” and “codimension” of D-modules.

2 Generalities

Let’s work in a more general setting. However, if at any point you wish to revert
to a more concrete example, please see Example 2.3.

2.1 Setup

Notation 2.1.

We always work over a fixed algebraically closed field of characteristic zero,
e.g. C (I’ll write C everywhere but you can replace it with another field as
you wish). Let R be a filtered ring with filtration F•R and assume that we
have the following properties:

• F0R is Noetherian;

• S• = grF R is commutative and generated (over F0R) by finitely
many elements of degree 1;

• S = S• is a regular ring with all maximal ideals of codimension d.
This is equivalent to requiring that SpecS is pure of dimension d (and
this assumption will allow us to define pure in the codimension sense,
see Definition 3.6).

Additionally, all R-modules in the remainder of this article are as-
sumed to be finitely-generated.

The assumptions imply the following facts:

Proposition 2.2.

• R is both left and right Noetherian.

• F is a filtration on both R and Rop, hence grF R can be identified
with grF Rop.

• The global dimension of S is equal to d. (This is the Auslander-
Buchsbaum-Serre theorem.)
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Example 2.3.

Our main example for R is the algebra of differential operators DA on
some affine n-dimensional variety SpecA, with the order filtration. In this
case d = 2n. Therefore, if at any point you wish to make this note more
concrete, I invite you to replace all R with DA (or even DAn , and S with
C[x1, . . . , xn, y1, . . . , yn]).

Alternatively, if A = C[x1, . . . , xn] and DAn is given the Bernstein fil-
tration, then we also get d = 2n.

2.2 Filtrations

Since R comes with a filtration F•R, we want every R-module M to come with
a filtration too. The basic idea is that this filtration on M should be compatible
with the filtration on R, plus satisfy a few finiteness conditions.

Definition 2.4.

A filtration on M compatible with R is a filtration F•M such that:

• FiM ⊆ Fi+1M ;

• FqM = 0 for q ≪ 0;

• M =
⋃

q∈Z FqM ;

• FpR · FqM ⊆ Fp+qM for all p, q ∈ Z.

The filtration is called a good filtration if it also satisfies:

• FqM is a finitely-generated (equivalently, finitely-present, i.e. coher-
ent) F0R-module for every q;

• There exists some t ∈ Z such that Fp+tM = FpR · FtM for all p ≥ 0
(this is called generated at level q).

Theorem 2.5.

A good filtration always exists on M (so long as M is finitely-generated).

Proof. Since M is finitely-generated, just take the finite collection of generators
and form the F0R-submodule M0 generated by these elements. Then declare
FpM = FpR ·M0 for every p. This is a good filtration.

Proposition 2.6.

LetM and N be R-modules, and choose good filtrations on them. For every
i, we have a noncanonical filtration on the abelian groups ExtiR(M,N) such
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that:

(1) The associated graded grExtiR(M,N) is isomorphic to a subquotient
of ExtiS(grM, grN).

(2) If for all ℓ < i that ExtℓS(grM, grN) = 0, then gr(ExtiR(M,N)) is
isomorphic to a subgroup of ExtiS(grM, grN).

Proof. The basic idea for obtaining these filtrations is to choose filtered free res-
olutions of M , which are very concrete (even if they are also very noncanonical),
and then we can study their convergence using spectral sequences. The proof is
not important for us, so for more details see [1, Proposition 5.2].

Remark 2.7.

In Proposition 2.6, we obtain noncanonical filtrations on ExtiR(M,N) as
abelian groups. When N = R, then each ExtiR(M,R) has the natural struc-
ture of a (left) Rop-module, and the filtration constructed in the proposition
is even a good filtration with respect to the filtration F•R

op on Rop.

2.3 Dualizing functors

Definition 2.8.

Let Db
f.g.(R) be the bounded derived category of the abelian category

R−modf.g. of finitely-generated R-modules.

Every element in Db
f.g.(R) can be represented by a finite complex of finitely-

generated R-modules.
Now recall that for rings A,B, then (A−B)-bimodules give functors between

the categories A−mod and Bop−mod (by tensor and Hom). Deriving these
functors gives eaxct functors between the derived categories. We apply that in
this case: R is an (R−R)-bimodule.

Definition 2.9.

We have an exact functor

DR : Db
f.g.(R) → Db

f.g.(R
op),

M 7→ RHomR(M,R).

Theorem 2.10.

The contravariant functor DR is an anti-equivalence of categories, with
inverse DRop .
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3 Dimension and codimension of module

In the case of D-modules, we can use the existence of good filtrations to define
the characteristic variety of a D-module M . It turns out that the characteristic
variety is actually independent of the choice of good filtration on M . We then
define the dimension of a D-module M to be the dimension of its characteristic
variety.

In this subsection we’ll do exactly the same thing in our more general setting
of R. Recall that we assume all R-modules to be finitely-generated.

3.1 Dimension

Definition 3.1.

Let M be an R-module, and choose a good filtration. Then we define
the characteristic variety Char(M) of M to be the support of grM in
SpecS. In other words, it is the closed subset of SpecS defined by the ideal√

AnnS(grM), the radical of the annihilator ideal of grM in S.
We define the dimension of M to be dimChar(M).
For an object u ∈ Db

f.g.(R), define

Char(u) :=
⋃
i∈Z

Char(Hi(u)).

It turns out that Char(M) is independent of the choice of good filtration, which
is crucial (and allows us to make a well-defined definition of dimension). Also
note that dim(M) ≤ dimSpecS = d.

Remark 3.2.

If we have a short exact sequence of R-modules

0 → M1 → M2 → M3 → 0,

then

Char(M2) = Char(M1)∪Char(M3) =⇒ dim(M2) = max(dim(M1),dim(M3)).

This readily extends to exact triangles u → v → w → u[1] in Db
f.g.(R):

we have Char(v) ⊆ Char(u) ∪ Char(w).

The important fact is that characteristic varieties are preserved by
duality. This is a generalization of the fact that characteristic varieties of
DX -modules are involutive with respect to the symplectic structure of T ∗X.
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Proposition 3.3.

For any u ∈ Db
f.g.(R), we have Char(u) = Char(DR(u)).

3.2 Codimension

We also have a notion of codimension of an R-module, which fortunately turns
out to be d− dim(M).

Definition 3.4.

The codimension of an R-module M is defined to be

j(M) := min
i∈Z≥0

(
Hi(DR(M)) = ExtiR(M,R) ̸= 0

)
.

In other words, it is the smallest integer i for which the ith co-
homology of DR(M) does not vanish.

Codimension can be thought of as “order of smallness” for a module: typ-
ically, we think of higher cohomology groups as “infinitesimal structure”
of a module/complex. This matches the intuition with higher codimension
being lower dimension, hence “smaller.”

Note that codimension is always well-defined for nonzero M , since DR is an
equivalence of (triangulated) categories and hence takesM to something nonzero
in Db

f.g.(R
op), which implies that some cohomology group must be nonzero (i.e.,

DR(M) is not quasi-isomorphic to the zero complex).

Remark 3.5.

If R is a commutative Noetherian ring, then j(M) = depth(AnnR(M), R).
If R is also assumed to be regular (hence Cohen-Macaulay) with all max-
imal ideals of the same codimension, then j(M) = codim(AnnR(M)) =
dim(R)− dim(M).

Definition 3.6.

M is pure if every nonzero submodule has the same codimension, i.e. for
every 0 ̸= N ⊆ M , we have j(N) = j(M).

This definition is linked directly to the notion “pure dimension” and should be
thought of as such: see Proposition 3.8. A module is pure iff the characteristic
variety is pure.

The Examples 4.2 and 4.3 showcase two pure modules.
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Theorem 3.7.

Let M be an R-module.

(1) j(M) = d− dim(M).

(2) If Hi(DR(M)) ̸= 0, then j(Hi(DR(M))) ≥ i.

(3) Hj(M)(DR(M)) is a pure R-module whose codimension is equal to
j(M), the codimension of M .

This useful theorem tells us 1) that codimension lives up to its name, and
2) the codimensions of the Rop-modules Hi(DR(M)), from which codimension
of M is defined upon.

Proposition 3.8.

• M is pure of codimension ℓ iff Char(M) is pure of dimension d− ℓ (iff
there is a good filtration on M such that grM is pure of codimension
ℓ).

• Let 0 → M1 → M2 → M3 → 0 be a short exact sequence of nonzero
R-modules. Then j(M1) = min (j(M1), j(M2)).

• If 0 ̸= M1,M2 ⊂ M then j(M1 +M2) = min (j(M1), j(M2)).

Remark 3.9.

One important consequence of (1) in Theorem 3.7 is that dimension of a
module does not depend on the filtration on the ring R, so long as the
associated graded of R has the same dimension. This is because the codi-
mension j is defined independently of any filtration. Therefore, so long as
we pick a filtration F ′ (different from our original filtration F ) for which
dimgrF

′
R = d = dimgrF R, then dimension of a module is still the same!

(However, the characteristic varieties are not, since we can’t even say that
Spec grF

′
R ∼= Spec grF R.)

In particular, for M a module over DAn , the notion of dimension via
the order filtration and the Bernstein filtration coincide.

4 Sato-Kashiwara filtration

The goal in this section is to study the Sato-Kashiwara filtration, which is a
decreasing filtration on an R-module by certain R-submodules.

4.1 Gabber filtration
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Definition 4.1.

Define the Gabber filtration on M to be

Gi(M) :=
∑

N⊆M,
j(N)≥i

N =
∑

N⊆M,
dim(N)≤d−i

N.

If M ̸= 0, we have that

M = Gj(M)(M) ⊇ Gj(M)+1(M) ⊇ · · · ⊇ Gd(M) ⊇ Gd+1(M) = 0.

Furthermore, if Gi(M) ̸= 0, then it follows from the third statement of
Proposition 3.8 that j(Gi(M)) ≥ i, hence Gi(M) is characterized by being the
unique largest submodule of M of codimension ≥ i.

The submodule Gi(M) is not always exactly codimension i: this only hap-
pens when Gi+1(M) = 0; if Gi+1(M) ̸= 0, then the quotient Gi(M)/Gi+1(M) is
pure of codimension i (or is 0). As a corollary, M ̸= 0 is pure iff Gj(M)+1(M) =
0.

We can think of the Gabber filtration as being the algebraic equivalent to
the filtration on the characteristic variety by its subvarieties of increas-
ing codimension (respectively, decreasing dimension). To each i, then
Gi(M) will be the largest submodule supported on a subvariety of M of
codimension-i (which is codimension i−j(M) in Char(M)). The character-
istic variety Char(M) may not be pure of dimension d− j(M), and if it is
not, the irreducible components of higher codimension ℓ > j(M) (i.e., lower
dimension) will precisely correspond to changes in the Gabber filtration at
Gℓ from Gℓ−1.

In particular, the obstruction to M being pure is the non-triviality of
the Gabber filtration (i.e. there are terms which are neither M nor 0 but
something in-between), and so these “higher-order” terms (where higher
order is “smaller”) correspond to the existence of irreducible components
of that codimension. If Char(M) were pure, each irreducible component
would be pure of codimension j, equivalently pure of dimension d−j (since
one of the assumptions is that SpecS is pure of dimension d). In turn, any
irreducible component of lower dimension, equivalently higher codimension,
will be detected by a nontrivial (i.e., proper nonzero) submodule appearing
in the Gabber filtration. So the Gabber filtration contains the obstructions
to pureness. In the case of DX -modules, holonomic is equivalent to pure
of codimension d/2 = dimX, hence the Gabber filtration contains the
obstruction to being holonomic as well.

Example 4.2.

Take R = DAn with the order filtration and M = OAn with the trivial fil-
tration, i.e. FiM = M for all i ≥ 0. Then grR ∼= C[x1, . . . , xn, y1, . . . , yn]
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where deg xi = 0 and deg yi = 1, while (grM)0 = C[x1, . . . , xn] and
(grM)>0 = 0. It follows that yi act by 0 and xi act by the standard
action, so Char(M) = An ⊂ A2n, which is a pure variety of dimension n
(hence pure of codimension n). The absence of irreducible subschemes of
An with dimension less than n implies that the higher Gabber filtration
terms vanish. Then it’s clear that G>n(M) = 0 and G≤n(M) = M (this
also implies OAn is holonomic).

Example 4.3.

Take R = M = DAn , both with order filtration. Then grR = grM =∼=
C[x1, . . . , xn, y1, . . . , yn] with deg xi = 0 and deg yi = 1, with the obvious
action. The characteristic variety is the entirety of Spec grR ∼= A2n, hence
is pure of dimension d = 2n. This corresponds to the Gabber filtration
being zero after j = d− d = 0. It follows that G0(M) = M and G>0(M) =
0.

This is a very concrete definition but it is a bit difficult to work with
since there are no obvious functorial properties. As a result, we introduce the
alternative, more abstract, characterization.

4.2 Sato-Kashiwara filtration

Since we’re working in the derived category Db
f.g.(R), we can use the trun-

cation functors τ≥i. We have a natural map X → τ≥iX for every object
X ∈ Db

f.g.(R
op) (in fact, there’s even an exact triangle τ≤i−1X → X → τ≥iX

which is functorial and characterizes the truncation functors), inducing isomor-
phisms on cohomology groups H≥i and zero maps on cohomology groups H<i.
Then applying DRop , we obtain a natural map DRopτ≥iX → DRop for every
X ∈ Db

f.g.(R)op.

Definition 4.4.

For any R-module M , we define the ith Sato-Kashiwara filtration of M
to be

Si(M) := im
[
H0 (DRopτ≥iDR(M)) → H0 (DRopDR(M))

]
,

∼= im
[
H0 (DRopτ≥iDR(M)) → M

]
.

First, we need to make sense of why this is a filtration.

Proposition 4.5.

The Si(M) form a finite, functorial, decreasing filtration of M .
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Proof. The reason why these form a filtration is simple: there’s a natural map
τ≥iDR(M) → τ≥i+1DR(M), and this map behaves well under the functorial
operations we perform to produce Si(M).

To see that it’s finite, we just have to note that S<0(M) = 0 and S>d(M) =
M since the global dimension of R is at most d (the global dimension of S),
and DR is computed using projective resolutions (which therefore can be made
finite of length ≤ d. It follows that the truncation functors τ>d kill the entire
complex τ>dDR(M) = 0, hence S>d(M) = 0.

Functoriality is clear, since the Si(M) are defined functorially. As a result,
if f : M1 → M2, then f(Si(M1)) ⊆ Si(M2).

Remark 4.6.

In fact, the maps H0(DRopτ≥iDR(M)) → M defining Si(M) are injective.
This can be seen by the long exact sequence associated to DRop applied
to the exact triangle τ≤i−1X → X → τ≥iX forX = DR(M), and then care-
fully analyzing the spectral sequence to see that theH−1(DRopτ≤i−1DR(M)) =
0.

4.3 The main theorem

We now have two interesting filtrations: the Gabber filtration and the Sato-
Kashiwara filtration. The Gabber filtration is very concrete and so is easier to
compute, but appears difficult to prove stuff, since it’s defined concretely rather
than abstractly. In Example 4.2 and Example 4.3 we computed the Gabber
filtration without too much difficulty. The Sato-Kashiwara filtration is a bit
difficult to understand concretely due to its abstract definition, but is easy to
work with (abstractly) since it’s defined functorially. We can see right from the
definition that it’s not exactly easy to compute with: it’s defined in terms of
RHom, which means we need to take a finite projective resolution and apply
Hom to it, then apply truncation functors and dualize again, which is just a
pain.

The main theorem (which should be a huge relief) is that these two filtra-
tions coincide, so we get the best of both worlds: it’s easy to compute from the
Gabber perspective, and use to work with abstractly from the Sato-Kashiwara
perspective.

Theorem 4.7.

The Gabber filtration and the Sato-Kashiwara filtration coincide:

Gi(M) = Si(M) for all i ∈ Z.

This might come as a surprise, but if we look closer, the definition of the
Sato-Kashiwara filtration actually encodes the Gabber filtration. The codi-
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mension measures the non-vanishing of the cohomology ofDRM . Therefore
to get the subset of codimension ≥ i, we need to kill the cohomology groups
H<i. How do we do that? Well, the natural method is to take the trun-
cation τ≥iDR(M): whichever submodule “gives” this under DR will, by
definition, have codimension ≥ i. So naturally we use D−1

R = DRop to go
back to the world of R-modules, resulting in DRopτ≥iDR(M). The only
issue is that this isn’t actually a submodule of M ... nor even a module.
To finally rectify that problem, we just apply H0 and this does give us the
submodule we want.

Proof. The first inclusion we need is Si(M) ⊆ Gi(M). Recall that one of the
defining characteristics of Gi(M) is that it is the unique largest submodule of
M which has codimension ≥ i. Therefore it suffices to show that j(Si(M)) ≥ i,
as then it will automatically be a submodule of Gi(M).

First, the exact triangle Hi(DR(M))[−i] → τ≥iDR(M) → τ≥i+1DR(M)
gives us the long exact sequence

0 → H0(DRopτ≥i+1DR(M)) → H0(DRopτ≥iDR(M)) → H0(DRop(Hi(DR(M)[−i]))) → . . . .

Now Remark 4.6 implies that we can actually identify the H0 with Si+1 and Si

themselves. On the other hand,

H0(DRop(Hi(DR(M)[−i]))) ∼= Ext0Rop(Hi(DR(M))[−i], Rop),

∼= ExtiRop(Hi(DR(M)), Rop),

∼= Hi(DRop(Hi(DR(M)))),

so we can apply (2) of Theorem 3.7 to see that the codimension of this term is
≥ i (assuming it’s nonzero). As a result,

0 → Si+1(M) → Si(M) → something of codimension ≥ i → . . . .

From this, we can begin with i = d (using the fact that codimension is bounded
above by d) and apply descending induction to obtain that Si(M) is sandwiched
between two things of codimension ≥ i+1 and ≥ i (respectively), hence Si(M)
also has codimension ≥ i, so Si(M) ⊆ Gi(M).

Now it remains to prove the reverse inclusion, that Gi(M) ⊆ Si(M). Natu-
rally if Gi(M) = 0 then Si(M) ⊆ Gi(M) = 0 must also be 0. So let’s assume
Gi(M) ̸= 0. Then by definition the codimension of Gi(M) ≥ i, so by definition
the map DR(G

i) → τ≥iDR(G
i) is a quasi-isomorphism. Applying exact functor

DRop , we find the quasi-isomorphism

DRopτ≥iDR(G
i)

qis−−→ DRopDR(G
i) ∼= Gi,

hence on the level of H0 we find that

Si(Gi)
∼−→ Gi
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either by identifying H0(DRopτ≥iDR(G
i)) ↪→ H0(M) with its image Si(Gi),

or by considering the built-in maps to DR(M) commutaive with the quasi-
isomorphism DR(G

i) → τ≥iDR(G
i). (The first method is simpler, but the

second method has the advantage of making it abundantly clear that that the
isomorphism Si(Gi(M)) ∼= Gi is actually an equality of submodules of M .)

By functoriality of Si (see Proposition 4.5) we find that the inclusionGi(M) ↪→
M gives us the inclusion Gi = Si(Gi) ↪→ Si, hence Gi ⊆ Si. This gives us the
reverse inclusion we need, and we conclude that Gi(M) = Si(M).
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